Search results for "Multispectral Images"

showing 6 items of 6 documents

Cloud screening and multitemporal unmixing of MERIS FR data

2007

The operational use of MERIS images can be hampered by the presence of clouds. This work presents a cloud screening algorithm that takes advantage of the high spectral and radiometric resolutions of MERIS and the specific location of some of its bands to increase the cloud detection accuracy. Moreover, the proposed algorithm provides a per-pixel probabilistic map of cloud abundance rather than a binary cloud presence flag. In order to test the proposed algorithm we propose a cloud screening validation method based on temporal series. In addition, we evaluate the impact of the cloud screening in a multitemporal unmixing application, where a temporal series of MERIS FR images acquired over Th…

ComputingMilieux_GENERALMERISLaboratory of Geo-information Science and Remote SensingCloud screeningMultispectral images550 - Earth sciencesLaboratorium voor Geo-informatiekunde en Remote SensingSub-pixel classificationPE&RCAstrophysics::Galaxy AstrophysicsSpectral unmixing
researchProduct

Optimal extension of multispectral image demosaicking algorithms for setting up a one-shot camera video acquisition system

2022

Multispectral images are acquired using multispectral cameras equipped with CCD or CMOS sensors which sample the visible or near infrared spectrum according to specific spectral bands. A mosaic of multispectral MSFA filters is superimposed on the surface of the sensors to acquire a raw image called an MSFA image. In the MSFA image, only one spectral band is available per pixel, the demosaicking process is necessary to estimate the multispectral image at full spatio-spectral resolution. Motivated by the success of single-sensor cameras capturing the image in a single exposure that use CFA filters, we performed a comparative study of a few recent color image demosaicking algorithms and experi…

Demosaicking algorithmAdaptive Kernel regressionInterpolation bilinéaire pondéréeMultispectral imagesnoyau adaptatif de régressionBiorthogonal waveletsMultispectral filter arrayRéseau de filtres multispectrauxImages multispectralesConvolutionComposante de luminance[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]LMMSEWeighted bilinear interpolationAlgorithme de démosaïquageLuminance componentOndelettes biorthogonales
researchProduct

Multispectral image denoising with optimized vector non-local mean filter

2016

Nowadays, many applications rely on images of high quality to ensure good performance in conducting their tasks. However, noise goes against this objective as it is an unavoidable issue in most applications. Therefore, it is essential to develop techniques to attenuate the impact of noise, while maintaining the integrity of relevant information in images. We propose in this work to extend the application of the Non-Local Means filter (NLM) to the vector case and apply it for denoising multispectral images. The objective is to benefit from the additional information brought by multispectral imaging systems. The NLM filter exploits the redundancy of information in an image to remove noise. A …

FOS: Computer and information sciencesMulti-spectral imaging systemsComputer Vision and Pattern Recognition (cs.CV)Optimization frameworkMultispectral imageComputer Science - Computer Vision and Pattern Recognition02 engineering and technologyWhite noisePixels[SPI]Engineering Sciences [physics][ SPI ] Engineering Sciences [physics]0202 electrical engineering electronic engineering information engineeringComputer visionUnbiased risk estimatorMultispectral imageMathematicsMultispectral imagesApplied MathematicsBilateral FilterNumerical Analysis (math.NA)Non-local meansAdditive White Gaussian noiseStein's unbiased risk estimatorIlluminationComputational Theory and MathematicsRestorationImage denoisingsymbols020201 artificial intelligence & image processingNon-local mean filtersComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyGaussian noise (electronic)Non- local means filtersAlgorithmsNoise reductionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFace Recognitionsymbols.namesakeNoise RemovalArtificial IntelligenceFOS: MathematicsParameter estimationMedian filterMathematics - Numerical AnalysisElectrical and Electronic EngineeringFusionPixelbusiness.industryVector non-local mean filter020206 networking & telecommunicationsPattern recognitionFilter (signal processing)Bandpass filters[ SPI.TRON ] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/ElectronicsStein's unbiased risk estimators (SURE)NoiseAdditive white Gaussian noiseComputer Science::Computer Vision and Pattern RecognitionSignal ProcessingArtificial intelligenceReconstructionbusinessModel
researchProduct

Extending the Unmixing methods to Multispectral Images

2021

In the past few decades, there has been intensive research concerning the Unmixing of hyperspectral images. Some methods such as NMF, VCA, and N-FINDR have become standards since they show robustness in dealing with the unmixing of hyperspectral images. However, the research concerning the unmixing of multispectral images is relatively scarce. Thus, we extend some unmixing methods to the multispectral images. In this paper, we have created two simulated multispectral datasets from two hyperspectral datasets whose ground truths are given. Then we apply the unmixing methods (VCA, NMF, N-FINDR) to these two datasets. By comparing and analyzing the results, we have been able to demonstrate some…

FOS: Computer and information sciencesMultispectral Imagesbusiness.industryComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageImage and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionHyperspectral imagingPattern recognitionUnmixingElectrical Engineering and Systems Science - Image and Video ProcessingField (computer science)Non-negative matrix factorizationRobustness (computer science)FOS: Electrical engineering electronic engineering information engineeringArtificial intelligencebusiness
researchProduct

Multispectral images-based background subtraction using Codebook and deep learning approaches

2020

This dissertation aims to investigate the multispectral images in moving objects detection via background subtraction, both with classical and deep learning-based methods. As an efficient and representative classical algorithm for background subtraction, the traditional Codebook has first been extended to multispectral case. In order to make the algorithm reliable and robust, a self-adaptive mechanism to select optimal parameters has then been proposed. In this frame, new criteria in the matching process are employed and new techniques to build the background model are designed, including box-based Codebook, dynamic Codebook and fusion strategy. The last attempt is to investigate the potent…

Soustraction d'arrière-PlanModèle de Codebook[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]Multispectral imagesBackground subtractionDeep learningCodebook modelImages multispectrales
researchProduct

Reconstruction of hyperspectral cutaneous data from an artificial neural network-based multispectral imaging system.

2011

International audience; The development of an integrated MultiSpectral Imaging (MSI) system yielding hyperspectral cubes by means of artificial neural networks is described. The MSI system is based on a CCD camera, a rotating wheel bearing a set of seven interference filters, a light source and a computer. The resulting device has been elaborated for in vivo imaging of skin lesions. It provides multispectral images and is coupled with a software reconstructing hyperspectral cubes from multispectral images. Reconstruction is performed by a neural network-based algorithm using heteroassociative memories. The resulting hyperspectral cube provides skin optical reflectance spectral data combined…

[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image ProcessingComputer scienceMultispectral imageHealth InformaticsDermoscopy[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing01 natural sciencesSensitivity and SpecificitySkin DiseasesMultispectral pattern recognition010309 opticsImaging systemSoftware[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingInterference (communication)0103 physical sciencesImage Interpretation Computer-AssistedSkin cancerHumansRadiology Nuclear Medicine and imagingComputer visionSpatial analysis[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingSpectral reflectanceRadiological and Ultrasound TechnologyArtificial neural networkbusiness.industryMultispectral images010401 analytical chemistryHyperspectral imagingReproducibility of ResultsEquipment DesignComputer Graphics and Computer-Aided Design0104 chemical sciencesEquipment Failure AnalysisHyperspectral cube reconstructionColorimetryComputer Vision and Pattern RecognitionArtificial intelligenceNeural Networks Computerbusiness[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingPreclinical imagingNeural networksFiltrationComputerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
researchProduct